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Abstract

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal 

lung developmental disease. Affected infants manifest with severe respiratory distress and 

refractory pulmonary hypertension and uniformly die in the first month of life. Heterozygous point 

mutations or copy-number variant deletions involving FOXF1 and/or its upstream lung-specific 

enhancer on 16q24.1 have been identified in the vast majority of ACDMPV patients. We have 

previously described two unrelated families with a de novo pathogenic frameshift variant c.

691_698del (p.Ala231Argfs*61) in the exon 1 of FOXF1. Here, we present a third unrelated 

ACDMPV family with the same de novo variant and propose that a direct tandem repeat of eight 

consecutive nucleotides GCGGCGGC within the ~ 4 kb CpG island in FOXF1 exon 1 is a novel 

mutation hotspot causative for ACDMPV.
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1. INTRODUCTION

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV, MIM# 

265380) is a rare neonatal developmental lung disease, lethal due to severe respiratory 

distress and refractory pulmonary hypertension (PAH) (Bishop, Stankiewicz, & Steinhorn, 

2011). To date, more than 70 distinct ACDMPV-related FOXF1 heterozygous point 

mutations and 60 copy-number variant (CNV) deletions involving FOXF1 and/or its 

upstream lung-specific enhancer at 16q24.1 have been identified in 80–90% of ACDMPV 

patients (Abu-El-Haija et al., 2018; Everett, Ataliotis, Chioza, Shaw-Smith, & Chung, 2017; 

Hayasaka et al., 2018; Ma et al., 2017; Nagano, Yoshikawa, Hosono, Takahashi, & 

Nakayama, 2016; Pradhan et al., 2019; Sen, Gerychova, et al., 2013; Stankiewicz et al., 

2009; Szafranski et al., 2013, 2014, 2016). FOXF1 (Forkhead box F1, MIM#601089) 

encodes a transcription factor of the fork-head family, and is regulated by the sonic 

hedgehog (SHH) signaling pathway during lung development (Fernandes-Silva, Correia-

Pinto, & Moura, 2017; Kalinichenko et al., 2001).

Recently, we described a genomic instability hotspot at 16q24.1, involving two 

evolutionarily young LINE-1 and Alu elements located at the edge of the FOXF1 enhancer, 

that mediate formation of different-sized CNVs (Szafranski et al., 2018). Here, we define a 

novel indel mutation hotspot in FOXF1 causative for ACDMPV.

2. MATERIAL AND METHODS

Ethical statement Patients were recruited and genetic testing was performed as a part of 

research protocol after obtaining parental consents. The study protocol was approved by the 

Institutional Review Board for Human Subject Research at Baylor College of Medicine 

(H-8712).

Clinical descriptions Patient 69.4 was a Caucasian girl reported by Sen et al., (2013) (pt#6). 

She was born at 39 weeks to a 28 years old G2P1 mother via vaginal delivery. Her 

birthweight was 3200 g and Apgar scores were 8/1 and 9/5. She was placed on 

extracorporeal membrane oxygenation (ECMO) and treated with nitric oxide, Milrinone, and 

Epoprostenol and died at 28 days of age due to respiratory failure. Histopathological 

evaluation of a lung biopsy sample revealed the characteristic constellation of changes seen 

in ACDMPV, including medial hyperplasia, small pulmonary arteries marked with extension 

of arterial smooth muscle into small alveolar wall vessels, lobular simplification with 

alveolar enlargement and poor subdivision, deficiency of normally positioned alveolar 

capillaries, and malposition of pulmonary veins adjacent to small pulmonary arteries. In 

addition to ACDMPV, there were interstitial changes highly suggestive of pulmonary 

interstitial glycogenosis with alveolar wall widening by bland mesenchymal cells with 

abundant clear to bubbly cytoplasm. An increased airway smooth muscle with intralobular 

extension was also observed.
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Patient 187.3, reported by Pradhan et al., (2019), was born at 35 3/7 weeks with a 

birthweight of 2325 g and Apgar scores 3/1 and 7/5. Pregnancy was complicated by fetal 

hypoplastic left heart, polyhydramnios, and enlarged fetal stomach. Labor and delivery were 

complicated by premature prolonged rupture of membranes with meconium stained fluid 55 

hours prior to delivery. After delivery child required resuscitation. The child developed 

apnea and was subsequently intubated. There were persistently hazy lung fields on chest x-

ray (CXR). The child received surfactant, antibiotics, and diuretics with no improvement on 

CXR. Cardiac catheterization was completed to rule out anomalous pulmonary venous 

return and the child was noted to have severe pulmonary venous desaturations. Lung biopsy 

was completed and pathology was consistent with ACDMPV. Lung support was withdrawn 

on day 16 of life.

Patient 188.3 was a girl born through an emergency caesarian section at 38 weeks with a 

birthweight of 3420 g. Pregnancy was complicated by polyhydramnios. The child had 

omphalocele, pyloric atresia, and intestinal malrotation which were operated on day 1 of 

life. The child also found to have severe PAH with structural cardiac anomalies. In spite of 

intensive medical therapy, she continued to have severe PAH and hypoxemic respiratory 

failure and was placed on veno-arterial ECMO on day 9 of her life After two weeks, she was 

off the ECMO support. After less than 48 hours a second run of ECMO was initiated due to 

worsening PAH and hypoxemic respiratory failure. ECMO support was discontinued on day 

36 of life. No lung biopsy or autopsy was performed; ACDMPV diagnosis was based on 

clinical and genetic findings.

Molecular studies The entire coding region of FOXF1 was amplified and sequenced in 

patient 188.3 as described (Sen et al., 2013). To determine whether identified variants in 

187.3 and 188.3 arose de novo, parental DNA samples were tested using PCR and Sanger 

sequencing. In family 187.3, the level of somatic mosaicism in the patient’s mother was 

ascertained using the Mutation Surveyor (SoftGenetics, State College, PA).

3. RESULTS

In patient 188.3, Sanger sequencing analysis revealed a deletion of one of two tandemly 

repeated 8-mers GCGGCGGC (NC_000016.9:g.86544866_86544873del) within a ~ 4 kb 

CpG island in the exon 1 of FOXF1 (Figure 1), resulting in a predicted codon frameshift and 

premature termination and protein truncation, c.691_698del, (p.Ala231Argfs*61). This 

variant is absent in the ExAc (v1.0), gnomAD (v2.1.1), and dbSNP (build 151) databases 

and its further investigation by PolyPhen and MutationTaster revealed that it is likely 

deleterious due to reading frame alteration. NMDEscPredictor (Coban-Akdemir et al., 2018) 

showed that the c.691_698del variant is expected to be subject to degradation by nonsense-

mediated decay and thus to lead to FOXF1 haploinsufficiency. Interestingly, we have 

reported the same variant in two unrelated ACDMPV patients 69.4 (pt#6) (Sen et al., 2013) 

and 187.3 (Pradhan et al., 2019).

Based on the previous analyses using PCR with primers amplifying the proband-specific 

junction fragment in the blood samples from the parents of patient 69.4, the c.691_698del 

variant has been determined to be de novo. The latter result is consistent with the analyses 
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using the blocker displacement amplification (BDA) method, whereby a blocker 

oligonucleotide that overlaps with the primer results in the preferred amplification of the 

mutated allele (Wu, Chen, Wu, Patel, & Zhang, 2017, manuscript submitted). Unexpectedly, 

Sanger sequencing of the blood sample of patient 187.3’s apparently unaffected mother, 

revealed the presence of somatic mosaicism. We have estimated the level of maternal 

somatic mosaicism at 25.08% (Figure S1).

4. DISCUSSION

The local DNA environment, including sequence context and epigenetic modifications, has 

been shown to mediate a formation of the significant fraction of point mutations and indels 

in the human genome. Cooper et al. (2011) estimated that ∼5% of point mutations causing 

human genetic diseases could be linked to methylation-mediated deamination of 5-

methylcytosine (5mC) within a CpG context. Their hypermutability is a result of DNA 

replication/repair errors generated during removal and base excision repair of guanine-

thymine mismatches, which are produced by spontaneous deamination of 5mC to thymine 

(Cooper, Mort, Stenson, Ball, & Chuzhanova, 2010). The first evidence of increased 

mutability at CpG motif related to human disease was identification of the recurrent 

missense mutations in F8 in patients with hemophilia A (Youssoufian et al., 1986). To date, 

the CpG hotspots have been associated with several constitutional recurrent mutations in 

multiple disease-related genes, e.g. FGFR3 (MIM# 134934), NF1 (MIM# 613113), RB1 
(MIM# 614041), DMD (MIM# 300377), and NACC1 (MIM#610672) in patients with 

achondroplasia (MIM#100800), neurofibromatosis type 1 (MIM# 162200), retinoblastoma 

(MIM# 180200), Duchenne muscular dystrophy (MIM# 310200), and neurodevelopmental 

disorder (MIM# 617393), respectively.

The formation of indel hotspots has been associated also with the local nucleotide context 

(Kondrashov & Rogozin, 2004). Recurring frameshifting indels have been described in 

repeated sequences in APC (MIM# 611731), FOXG1 (MIM# 164874), PRRT2 (MIM# 

614386), and RAI1 (MIM# 607642) in patients with familial adenomatous polyposis 1 

(MIM# 175100), congenital variant of Rett syndrome (MIM# 312750), episodic kinesigenic 

dyskinesia 1 (MIM#128200), and Smith-Magenis syndrome (MIM# 182290), respectively.

The presence of repetitive DNA sequences, including short direct or inverted repeats, have 

been recognized as an important factor predisposing to the formation of indels, likely due to 

slipped-strand mispairing during DNA replication/repair (Ball et al., 2005; Kondrashov & 

Rogozin, 2004). Specifically, Kondrashov & Rogozin (2004) showed that the impact of 

nucleotide periodicity on mutation rate increases with the number and length of repeated 

segments. For example, homonucleotide tracts (sequences with period equal to one) are 

more prone for mutations if they are four or more nucleotide long, while if the period is 

three nucleotides or longer, even two direct repeats in tandem can increase the deletion rate 

(Kondrashov & Rogozin, 2004). Moreover, it has been shown that the crystal structure for 

the 8-mer presented here (GCGGCGGC)2, containing the CGG RNA repeats associated with 

the fragile X disorders, can form a duplex with non-canonical G-G pairing and G-

quadruplex DNA secondary structures; a hybrid between DNA (the non-template strand) and 
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nascent RNA is also possible (Kiliszek, Kierzek, Krzyzosiak, & Rypniewski, 2011). The 

region around the repeats is also prone to other secondary structures (Figure 1).

We propose that similar pre-or postzygotic DNA replication/repair errors predispose to the 

formation of the recurrent frameshifting indel c.691_698del within the GCGGCGGC 

tandem repeat in the CpG island of FOXF1 exon 1, leading to the lethal ACDMPV 

phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic representation of the FOXF1 region with exon 1 sequence.
A) The described mutation identified in three unrelated patients with ACDMPV is shown 

below the gene track. The CpG islands are marked in green. H3KMe3 and H3K27Ac marks 

in the fetal lungs are shown in pink. B) The nucleotide sequence of exon 1 of FOXF1. The 8-

bp GCGGCGGC repeats are underlined. The 8-bp GCGGCGGC tandem repeat sequence 

with one motif deleted in three unrelated ACDMPV patients is in red. C) Predicted hairpin 

structure (only the folding of the most stable conformer is shown) of 200 bp sequences 

around the 8-bp GCGGCGGC repeat assessed using the mfold software (Zuker, 2003).

Karolak et al. Page 7

Am J Med Genet A. Author manuscript; available in PMC 2019 November 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	MATERIAL AND METHODS
	RESULTS
	DISCUSSION
	References
	Figure 1.

